Small Covers of Graph-associahedra and Realization of Cycles

نویسنده

  • ALEXANDER A. GAIFULLIN
چکیده

An oriented connected closed manifold Mn is called a URC-manifold if for any oriented connected closed manifold Nn of the same dimension there exists a non-zero degree mapping of a finite-fold covering M̂n of Mn onto Nn. This condition is equivalent to the following: For any n-dimensional integral homology class of any topological space X , a multiple of it can be realized as the image of the fundamental class of a finite-fold covering M̂n of Mn under a continuous mapping f : M̂n → X . In 2007 the author gave a constructive proof of the classical result by Thom that a multiple of any integral homology class can be realized as an image of the fundamental class of an oriented smooth manifold. This construction yields the existence of URC-manifolds of all dimensions. For an important class of manifolds, the so-called small covers of graph-associahedra corresponding to connected graphs, we prove that either they or their two-fold orientation coverings are URC-manifolds. In particular, we obtain that the two-fold covering of the small cover of the usual Stasheff associahedron is a URC-manifold. In dimensions 4 and higher, this manifold is simpler than all previously known URC-manifolds.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Of Graph - Associahedra

Given any finite graph G, we offer a simple realization of the graph-associahedron PG using integer coordinates.

متن کامل

A realization of graph associahedra

Given any finite graph G, we offer a simple realization of the graph-associahedron PG using integer coordinates.

متن کامل

Graph Properties of Graph Associahedra

A graph associahedron is a simple polytope whose face lattice encodes the nested structure of the connected subgraphs of a given graph. In this paper, we study certain graph properties of the 1-skeleta of graph associahedra, such as their diameter and their Hamiltonicity. Our results extend known results for the classical associahedra (path associahedra) and permutahedra (complete graph associa...

متن کامل

0n removable cycles in graphs and digraphs

In this paper we define the removable cycle that, if $Im$ is a class of graphs, $Gin Im$, the cycle $C$ in $G$ is called removable if $G-E(C)in Im$. The removable cycles in Eulerian graphs have been studied. We characterize Eulerian graphs which contain two edge-disjoint removable cycles, and the necessary and sufficient conditions for Eulerian graph to have removable cycles h...

متن کامل

Vertex Removable Cycles of Graphs and Digraphs

‎In this paper we defined the vertex removable cycle in respect of the following‎, ‎if $F$ is a class of graphs(digraphs)‎ ‎satisfying certain property‎, ‎$G in F $‎, ‎the cycle $C$ in $G$ is called vertex removable if $G-V(C)in in F $.‎ ‎The vertex removable cycles of eulerian graphs are studied‎. ‎We also characterize the edge removable cycles of regular‎ ‎graphs(digraphs).‎    

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016